2019 Grant Language

Now Posted under the Research Menu

The VCU Center for High Performance Computing (CHiPC) occupies approximately 2000 sq ft of total space, predominantly on the third floor of Harris Hall on the Monroe Park Campus. The mission of the CHiPC is to provide high performance computing services for the VCU research community. To accomplish this goal, the CHiPC maintains four major supercomputing clusters, each specialized for different computing environments. They may be summarized as follows (descriptions current as of June 2019)

1) teal.vcu.edu is the primary cluster intended for large scale parallel computing, and is especially well suited for applications such molecular dynamics simulations, quantum chemistry and other Physical Sciences jobs. Teal consists of ~5104 64 bit Intel and AMD compute cores, each with 2-4 GB RAM/core, 10.2 TB of total RAM, 180 TB of /home space, and tmp space of between 360 and 787 GB per node and includes several GPU nodes along with a high speed network infrastructure is provided by a 20 Gb/second Infiniband architecture

2) bach.vcu.edu is the cluster designated for serial and small parallel applications. Bach consists of a total of 920 AMD 64 bit cores, each with a minimum of 2 GB/core RAM, 2 TB total RAM, 12 TB of /home space, and /tmp space of 360 GB per node. Networking infrastructure is gigabit ethernet

3) godel.vcu.edu is a cluster optimized for bioinformatics applications, with 1624 Intel and AMD 64 bit cores, each with at least 3 GB RAM/core, 4.8 TB of total RAM, 17 TB of /home space, tmp space of at least 180 GB/node, a GPU system and 40 Gb/second Infiniband networking, 1.2TB of GPFS high performance parallel file system storage.

4) fenn.vcu.edu is a cluster designed to support research using data that must comply with federal security and privacy requirements It consists of 1016 Intel 64 bit cores, 2/GB of RAM/core, 900 TB of GPFS high performance parallel file system storage (expandable to 2.2PB), and 54 Gb/second Infiniband networking. The Fenn system employs a security model that requires all access via VPN, and exists on a separate virtual and physical network from other university and CHiPC resources

To support this infrastructure, the CHiPC employees 4 FTE positions, (J. Mike Davis, Technical Director; Carlisle Childress & Brad Freeman, Systems Analysts; and John Layne, Applications Analyst. In addition to maintaining the hardware, the CHiPC works collaboratively with VCU Researchers to maintain and optimize a large number of applications and development tools (BLAST, R, MATLAB, NAMD, Gaussian, Gromacs, Charm, C/C++, Fortran compilers) as well as other scientific, statistical and development software.

Privacy Statement